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Abstract In this paper, we introduce and study a model of Tessiet type food chain
chemostat with periodically varying substrate. We investigate the subsystem with sub-
strate and prey and study the stability of the periodic solutions, which are the boundary
periodic solutions of the system. The stability analysis of the boundary periodic solu-
tion yields an invasion threshold. By use of standard techniques of bifurcation theory,
we prove that above this threshold there are periodic oscillations in substrate, prey and
predator. Furthermore, we numerically simulate a model with sinusoidal dilution rate,
by comparing bifurcation diagrams with different bifurcation parameters, we can see
that the periodic system shows two kinds of bifurcations, whose are period-doubling
and period-halving.

Keywords Bifurcation · Tessiet type functional response · Chemostat · Periodic
input · Chaos

1 Introduction

As well known, countless organisms live in seasonally or diurnally forced environ-
ment, in which the populations obtain food, so the effects of this forcing may be

G. Pang (B) · Y. Liang
Department of Mathematics and Computer Science, Yulin Normal University, Yulin, Guangxi 537000,
P.R. China
e-mail: g.p.pang@163.com

Y. Liang
e-mail: yulinsjxlyl@163.com

F. Wang
College of Science, Jimei University, Xiamen, Fujian 361021, P.R. China
e-mail: wangfy68@163.com

123



J Math Chem (2008) 44:674–690 675

quite profound. There is evidence, for example, the seasonal variation in contact rates
derives the dynamics of childhood disease epidemics [1], and that seasonal or diurnal
periodicity in competition coefficients can play a pivotal role in the coexistence of
some competitors [2]. A chemostat is a common laboratory apparatus used to cul-
ture microorganisms. Sterile growth medium enters the chemostat at a constant rate;
the volume within the chemostat is held constant. In its simplest form, the system
approximates conditions for plankton growth in lakes, where the limiting nutrients
such as silica and phosphate are supplied from streams draining the watershed.
Recently many papers studied chemostat model with variations in the supply of nutri-
ents or the washout. Chemostat with periodic inputs are studied in [3–7], those with
periodic washout rate in [8,9], and those with periodic input and washout in [10]. In
this paper, we introduce and study a model of Tessiet type food chain chemostat with
periodically varying substrate, we may write

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d S
dT = D[S0(1 + εA(T )) − S] − µ1

δ1

exp(−B1 S)SH
(A1+S)

,

d H
dT = µ1 exp(−B1 S)SH

A1+S − DH − µ2
δ2

exp(−B2 H)H P
(A2+H)

,

d P
dT = µ2 exp(−B2 H)H P

A2+H − D P,

(1.1)

where is the ω-period continuous function A(T ), with

ω∫

0

A(T )dT = 0, |A(T )| ≤ 1, 0 ≤ ε < 1.

For periodic operation of the chemostat, the dilution rate will be used as the varying
parameter, D(1 + εA(T )). Note that it should be in order to ensure that the dilution
rate is nonnegative for all time (|A(t)| ≤ 1, 0 ≤ ε < 1). The state variables S, H
and P represent the concentration of limiting substrate, prey, and predator. S0 is the
concentration of the rate-limiting substrate in the feed; µ1 and µ2 are the uptake and
predation constants of the prey and predator; δ1 is the yield of prey per unit mass of
substrate; δ2 is the biomass yield of predator per unit mass of prey.

There are advantages in analyzing dimensionless equations. We choose the non-
dimensional variables to be

x ≡ S

S0
, y ≡ H

δ1S0
, z ≡ P

δ1δ2S0
, t ≡ DT .

After some algebra, this yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = 1 + εa(t) − x − m1 exp(−b1x)xy

a1+x ,

dy
dt = m1 exp(−b1x)xy

a1+x − y − m2 exp(−b2 y)yz
a2+y ,

dz
dt = m2 exp(−b2 y)yz

a2+y − z,

(1.2)
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with

m1 = µ1

D
, a1 = A1

S0
, b1 = B1S0; m2 = µ2

D
, a2 = A2

δ1S0
, b2 = B2S0δ1;

a(t) = A(t/D),

τ∫

0

a(t)dt = 0, |a(t)| ≤ 1, 0 ≤ ε < 1, τ = ωD.

The organizations of the paper are as following. In next section, we investigate the
existence and stability of the periodic solutions of the impulsive subsystem with sub-
strate and prey. In Sect. 3, we study the locally stability of the boundary periodic
solution of the system and obtain the threshold of the invasion of the predator. By use
of standard techniques of bifurcation theory, we prove that above this threshold there
are periodic oscillations in substrate, prey and predator. In Sect. 4, we numerically
analyze the complexity of a mass-action model with sinusoidally forced inflowing
substrate. By comparing bifurcation diagrams with different bifurcation parameters,
we can see that the periodic system shows two kinds of bifurcations, whose are period-
doubling and period-halving.

2 Behavior of the substrate bacterium subsystem

In the absence of the protozan predator, system (1.2) reduces to

{
dx
dt = 1 + εa(t) − x − m1 exp(−b1x)xy

a1+x ,

dy
dt = m1 exp(−b1x)xy

a1+x − y,
(2.1)

This nonlinear system has simple periodic solutions. For our purpose, we present these
solutions in this section.

If we add the first and second equations of the system (2.1), we have (d(x +
y))/(dt) = (1 + εa(t)) − (x + y). If we take variable changes s = x + y then the
system (2.1) can be rewritten as

ds

dt
= (1 + εa(t)) − s. (2.2)

Equation (2.2) has a period solution s̃(t), where

s̃(t) := [s̃(0) +
t∫

0

el(1 + εa(l))dl]e−t ,

s̃(0) := 1

eτ − 1

τ∫

0

el(1 + εa(l))dl,

τ∫

0

s̃(t)dt = τ.
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The multiplier of τ -period solution s̃(t) is e−τ < 1, hence it is globally asymptotically
stable.

Lemma 2.1 The subsystem (2.2) has a positive periodic solution s̃(t) and for every
solution s(t) of (2.2) we have |s(t) − s̃(t)| → 0 as t → ∞.

Lemma 2.2 Let (x(t), y(t)) be any solution of system (2.1) with initial condition
x(0) ≥ 0, y(0) > 0, then limt→∞ |x(t) + y(t) − s̃(t)| = 0.

The Lemma 2.2 says that the periodic solution s̃(t) is uniquely invariant manifold
of the system (2.1).

Theorem 2.1 For the system (2.1), we denote

m∗
1 := τ

⎛

⎝

τ∫

0

m1s̃(l) exp(−b1s̃(l))

a1 + s̃(l)
dl

⎞

⎠

−1

.

(1) If m1 < m∗
1, then the system (2.1) has a unique globally asymptotically stable

positive τ -period solution (xe(t), ye(t)), where

xe(t) = s̃(t), ye(t) = 0; (2.3)

(2) If m1 > m∗
1, then the system (2.1) has a unique globally asymptotically stable

positive τ -period solution (xs(t), ys(t)) and the τ -periodic solution (xe(t), ye(t))
is unstable. The τ -period positive solution ys(t) satisfies

τ∫

0

m1(s̃(l) − ys(l)) exp(−b1(s̃(l) − ys(l)))

a1 + (s̃(l) − ys(l))
dl = τ. (2.4)

Proof By Lemma 2.1, we can consider the system (2.1) in its stable invariant manifold
s̃(t), that is

dy

dt
= m1(s̃(t) − y) exp(−b1(s̃(t) − y))y

a1 + (s̃(t) − y)
− y,

0 ≤ y0 ≤ s̃(0). (2.5)

Suppose y(t, y0) is a solution of Eq. 2.5, with initial condition y0 ∈ [0, s̃(0)]. We have

y(t, y0) = y(0) exp

⎛

⎝

t∫

0

(
m1(s̃(l)−y(l, y0)) exp (−b1(s̃(l)−y(l, y0)))

a1+ (s̃(l)−y(l, y0))
−1

)

dl

⎞

⎠ .

(2.6)
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For (2.6), we have the following properties:

(i) The function G(y0) = y(t, y0), y0 ∈ (0, s̃(0)] is a increasing function;
(ii) 0 < y(t, y0) < s̃(t), t ∈ (0,∞) is continuous function;
(iii) y(t, 0) = 0, t ∈ (0,∞) is a solution .

The periodic solutions of (2.5) satisfy the following equation

y0 = y0 exp

⎛

⎝

τ∫

0

(
m1(s̃(l) − y(l, y0)) exp(−b1(s̃(l) − y(l, y0))

a1 + (s̃(l) − y(l, y0))
− 1

)

dl

⎞

⎠ .

(2.7)

By (i), (ii) and (iii), we know that if (1/τ)
∫ τ

0 (m1s̃(l) exp(−b1s̃(l)))/(a1+s̃(l))dl > 1,
the Eq. 2.6 has a unique solution in (0, s̃(0)]; otherwise, it has no solution in (0, s̃(0)].

If m1 < m∗
1, it is obvious that

y(t) ≤ y(0) exp

⎛

⎝

t∫

0

m1s̃(l) exp(−b1s̃(l))

a1 + s̃(l)
dl − t

⎞

⎠ . (2.8)

By
∫ τ

0 (m1s̃(l) exp(−b1s̃(l)))/(a1 + s̃(l))dl − τ < 0, we obtain that y(t) tends
exponentially to zero as t → +∞. Considering the system (2.2), we have x(t) =
s(t) − y(t). By Lemma 2.2, we have limt→∞ |x(t) − s̃(t)| = 0. If m1 < m∗

1,
then the Eq. 2.5 has stable periodic solution ye(t) = 0. By Lemma 2.2, we have
limt→∞ |x(t) − s̃(t)| = 0. We have proved in (1).

If m1 > m∗
1, then the Eq. 2.5 has uniquely positive periodic solution. We denote

this positive periodic solution

ys(t) = y(t, y∗
0 ), xs(t) = s̃(t) − y(t, y∗

0 ),

which satisfies the following equation

τ∫

0

m1(s̃(t) − ys(l)) exp[−b1(s̃(t) − ys(l))]
a1 + (s̃(t) − ys(l))

dl = τ. (2.9)

We denote y∗
0 := ys(0).

For proving the stability of the period solution ys(t), we define a function G(y0) :
y0 ∈ (0, s̃(0)) as following:

G(y0) = exp

⎛

⎝

τ∫

0

m1(s̃(t) − y(l, y0)) exp(−b1(s̃(t) − y(l, y0)))

a1 + (s̃(t) − y(l, y0))
dl − τ

⎞

⎠ .
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Noticing Eq. 2.5, we have

G(y0) = y(τ, y0)

y0
, y0 ∈ (0, 1). (2.10)

It is obvious that G(y∗
0 )) = 1.

Furthermore, (∂y(t, y0))/(∂y0) ≥ 0, t ∈ (0, τ ) is hold (otherwise, there exist
t0 > 0, 0 < y1 < y2 < 1 such that y(t0, y1) = y(t0, y2), that is a contradiction with
the different flows of system (3.5) not to intersect). So we obtain that the function
G(y0) have the following properties:

G(y0) < 1, if y∗
0 < y0 < 1,

G(y0) = 1, if y0 = y∗
0 ,

G(y0) > 1, if 0 < y0 < y∗
0 .

(2.11)

Furthermore, we obtain the following equations

y0 > y(τ, y0) > · · · > y(nτ, y0) > y∗
0 , if y∗

0 < y0 ≤ 1,

y0 < y(τ, y0) < · · · < y(nτ, y0) < y∗
0 , if ε ≤ y0 < y∗

0 .
(2.12)

Set y0 ∈ (0, 1). According to (2.12), we suppose that

lim
n→∞ y(nτ, y0) = a.

We shall prove that the solution y(t, a) is τ -periodic. We note that the functions
yn(t) = y(t + nτ, y0), due to the τ periodicity of Eq. 2.5, are also its solutions and
yn(0) → a as n → ∞. By the continuous dependence of the solutions on the initial
values we have that y(τ, a) = limn→∞ yn(τ ) = a. Hence the solution y(t, a) is
τ -periodic. The periodic solution y(t, y∗

0 ) is unique, so a = y∗
0 .

Let ε > 0 be given. By the theorem on the continuous dependence of the solutions
on the initial values, there exists a δ > 0 such that

|y(t, y0) − y(t, y∗
0 )| < ε,

if |y0 − y∗
0 | < δ and 0 ≤ t ≤ τ . Choose n1 > 0 so that |y(nτ, y0) − y∗

0 | < δ for
n > n1. Then |y(t, y0) − y(t, y∗

0 )| < ε for t > nτ which proves that

lim
n→∞ |y(t, y0) − y(t, y∗

0 )| = 0, y0 ∈ (0, s̃(0)].

For the system (2.1), by Lemma 2.2 we obtain that for any solution (x(t), y(t)) with
initial condition x(0) ≥ 0, y(0) > 0 |x − xs | → 0, |y − ys | → 0 as t → ∞.
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From the τ -period solution ys being globally asymptotically stable, we can obtain
that the multiplier µ of ys , which satisfies

µ = exp

⎛

⎝

τ∫

0

m1xs(l)ys(l)(−1 + b1xs(l) + a1b1x2
s (l)) exp(−b1xs)

(1 + a1xs(l))2 dl

⎞

⎠ < 1,

(2.13)

where we have used (2.9). This conclusion will be used in the section . We have
proved (2). �	

3 The bifurcation of the system

In order to investigate the invasion of the predator of system (1.2), we add the first,
second and third equations of it and take variable changes s = x + y + z, by Lemma
2.1, the following lemma is obvious.

Lemma 3.1 Let (x(t), y(t), z(t)) be any solution of system (1.2) with X (0) > 0, then

limt→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0. (3.1)

The Lemma 3.1 says that the periodic solution s̃(t) is an invariant manifold of
system (1.2).

For convenience, in the following discussing if m1 > m∗
1, we denote that

m∗
2 := τ

(∫ τ

0

ys(l) exp(−b2 ys(l)

a1 + ys(l)
dl

)−1

.

Theorem 3.1 Let (x(t), y(t), z(t)) be any solution of system (1.2) with X (0) > 0.

(1) If m1 > m∗
1 and m2 < m∗

2, then the system (1.2) has a unique globally asymptoti-
cally stable boundary τ -periodic solution (xs(t), ys(t), 0) is globally asymptotical
stable.

(2) If m1 > m∗
1 and m2 > m∗

2, then the periodic boundary solution (s̃(t) − ys(t),
ys(t), 0) of the system (1.2) is unstable.

Proof The local stability of periodic solution (xs(t), ys(t), 0) may be determined by
considering the behavior of small amplitude perturbations of the solution. Define

x(t) = u(t) + xs(t), y(t) = v(t) + ys(t), z(t) = w(t)

there may be written

⎛

⎝
u(t)
v(t)
w(t)

⎞

⎠ = �(t)

⎛

⎝
u(0)

v(0)

w(0)

⎞

⎠ 0 ≤ t < τ
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where �(t) satisfies (d�)/(dt) = D∗(t)�(t), where

D∗(t) =

⎛

⎜
⎜
⎜
⎝

−1 − m1b1a1xs ys e−b1xs

(a1+xs )2 −m1xs e−b1xs

a1+xs
0

m1b1a1xs ys e−b1xs

(a1+xs )2
m1xs e−b1xs

a1+xs
− 1 −m2 ys e−b2 ys

a2+ys

0 0 m2 ys e−b2 ys

a2+ys
− 1

⎞

⎟
⎟
⎟
⎠

and �(0) = I , the identity matrix. Hence the fundamental solution matrix is

�(τ) =

⎛

⎜
⎜
⎜
⎝

φ11(τ ) φ12(τ ) ∗
φ21(τ ) φ22(τ ) ∗∗

0 0 exp

(
τ∫

0

(
m2 ys (l)e−b2 ys (l)

a2+ys (l)
− 1

)
dl

)

⎞

⎟
⎟
⎟
⎠

. (3.2)

It is no need to give the exact form of (∗) and (∗∗) as it is not required in the analysis
that follows.

The eigenvalues of the matrix �(τ) are µ3 = exp(
∫ τ

0 ((m2 ys(l)e−b2 ys (l))/

(a2 + ys(l)) − 1)dl) and the eigenvalues µ1, µ2 of the following matrix

(
φ11(τ ) φ12(τ )

φ21(τ ) φ22(τ )

)

. (3.3)

The µ1, µ2 are also the multipliers the locally linearizing system of the system (2.1)
provided with m1 > m∗

1 at the asymptotically stable periodic solution (xs(t), ys(t)),
according to Theorem 2.1, we have that µ1 < 1, µ2 < 1.

If m1 > m∗
1 and m2 < m∗

2, the µ3 = exp(
∫ τ

0 ((m2 ys(l)e−b2 ys (l))/(a2 + ys(l) −
1))dl) < 1, the boundary periodic solution (xs(t), ys(t), 0) of the system (1.2) is
locally asymptotically stable. We have that z(t) ≤ z(0) exp(

∫ t
0 ((m2 ys(l)e−b2 ys (l))/

(a2 + ys(l)) − 1)dl), hence we obtain that for any solution (x(t), y(t), z(t)) with
X (0) > 0 z(t) → 0 as t → ∞. By limt→∞ |x(t) + y(t) + z(t) − s̃(t)| = 0, we have
limt→∞ |x(t) + y(t) − s̃(t)| = 0. Now using Theorem 2.1, we have limt→∞ |y(t) −
ys(t)| = 0 and limt→∞ |x(t) − xs(t)| = 0.

If m1 > m∗
1 and m2 > m∗

2, the µ3 = exp(
∫ τ

0 ((m2 ys(l)e−b2 ys (l))/(a2 + ys(l)) −
1)dl) > 1, the boundary periodic solution (xs(t), ys(t), 0) of the system (1.2) is
unstable. We complete the proof. �	

Let B denote the Banach space of continuous, τ -periodic functions N : [0, τ ] →
R2. In the set B introduce the norm |N |0 = sup0≤t≤τ |N (t)| with which B becomes
a Banach space with the uniform convergence topology.

For convenience, just like [11] we introduce the following Lemmas 3.2 and 3.3.

Lemma 3.2 Suppose ai j ∈ B. (a) If
∫ τ

0 a22(s)ds 
= 0,
∫ τ

0 a11(s)ds 
= 0, then the
linear homogenous system

{ dy1
dt = a11 y1 + a12 y2,

dy2
dt = a22 y2,

(3.4)
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has no nontrivial solution in B × B. In this case the nonhomogeneous system

{ dx1
dt = a11x1 + a12x2 + f1,

dx2
dt = a22x2 + f2,

(3.5)

has, for every ( f1, f2) ∈ B × B, a unique solution (x1, x2) ∈ B × B and the operator
L : B×B → B×B defined by (x1, x2) = L( f1, f2) is linear and compact. If we define
that x ′

2 = a22x2 + f2 has a unique solution x2 ∈ B and the operator L2 : B → B
defined by x2 = L2 f2 is linear and compact. Furthermore, x ′

1 = a11x1 + f3 for
f3 ∈ B has a unique solution (since

∫ τ

0 a11(s)ds 
= 0) in B and x1 = L1 f3 defines a
linear, compact operator L1 : B → B. Then we have

L( f1, f2) ≡ (L1(a12L2 f2 + f1), L2 f2). (3.6)

(b) If
∫ τ

0 a22(s)ds = 0,
∫ τ

0 a11(s)ds 
= 0, then (3.4) has exactly one independent
solution in B × B.

Lemma 3.3 Suppose c ∈ B and 1
τ

∫ τ

0 c(l)dl = 0. Then x ′ = cx + f, f ∈ B, has a

solution x ∈ B if and only if 1
τ

∫ τ

0 f (l)(exp(− ∫ l
0 c(s)ds))dl = 0.

By the Lemma 3.1, in its invariant manifold x(t) + y(t) + z(t) = s̃(t), the system
(1.2) reduce to a equivalently nonautonomous system as following

⎧
⎪⎪⎨

⎪⎪⎩

dy
dt = m1 exp(−b1(s̃(t)−y−z))(s̃(t)−y−z)y

a1+(s̃(t)−y−z) − y − m2 exp(−b2 y)yz
a2+y ,

dz
dt = m2 exp(−b2 y)yz

a2+y − z,

y(0) > 0, z(0) ≥ 0, y(0) + z(0) ≤ 1.

(3.7)

If m1 > m∗
1, for the system (3.7), by the Theorem 3.1 the boundary periodic solution

(ys(t), 0) is locally asymptotically stable provided with m2 < m∗
2, and it is unstable

provided with m2 > m∗
2, hence the value m∗

2 practices as a bifurcation threshold. For
the system (3.7), we have the following results.

Theorem 3.2 For the system (3.7), m1 > m∗
1 is hold, then there exists a constance

λ0 > 0, such that for each m2 ∈ (m∗
2, m∗

2 +λ0), there exists a solution (y, z) ∈ B × B
of (3.7) satisfying 0 < y < ys, z > 0 and x = s̃ − y − z > 0 for all t > 0. Hence, the
system (3.3) has a positive τ -periodic solution (s̃ − y − z, y, z).

Proof Let x1 = y − ys(t), x2 = z in (3.7), then

{ dx1
dt = F11(xs, ys)x1 − F12(m2, xs, ys)x2 + g1(x1, x2),

dx2
dt = F22(m2, ys)x2 + g2(x1, x2).

(3.8)
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where

F11(xs, ys) = m1xs exp(−b1xs)

a1 + xs
− 1 − m1 ys exp(−b1xs)(a1 − a1b1xs − b1x2

s )

(a1 + xs)2 ,

F12(m2, xs, ys) = m1 ys exp(−b1xs)(a1 − a1b1xs − b1x2
s )

(a1 + xs)2 + m2 ys exp(−b2 ys)

a2 + ys
,

F22(m2, ys) = m2 ys exp(−b2 ys)

a2 + ys
− 1.

We know that 1/τ
∫ τ

0 (m2 ys(l))/(a2 + ys(l))dl − 1 
= 0, by the Lemma 3.3, using L
we can equivalently write the system (3.8) as the operator equation

(x1, x2) = L∗(x1, x2) + G(x1, x2), (3.9)

where

G(x1, x2) = (L1(−F12(xs, ys)g2(x1, x2) + g1(x1, x2)), L2g2(x1, x2)).

Here L∗ : B×B → B×B is linear and compact and G : B×B → B×B is continuous
and compact (since L1 and L2 are compact) and satisfies G = o(|(x1, x2)|0) near
(0,0). A nontrivial solution (x1, x2) 
= (0, 0) for some m2 > 1 yields a solution
(y, z) = (ys + x1, x2) of the system (3.7). Solutions (y, z) 
= (ys, 0) will be called
nontrivial solutions of system (3.7).

We apply well-known local bifurcation techniques to (3.9). As is well known,
bifurcation can occur only at the nontrivial solution of the linearized problem

(y1, y2) = L∗(y1, y2), m2 > 0. (3.10)

If (y1, y2) ∈ B × B is a solution of (3.10) for some m2 > 0, then by the very manner
in which L∗ was defined, (y1, y2) solves the system

{ dy1
dt = F11(xs, ys)y1 − F12(xs, ys)y2,

dy2
dt = F22(xs, ys)y2

(3.11)

and conversely. Using Lemma 3.2 (b), we see that (3.11) and hence (3.10) has one
nontrivial solution in B×B if and only if 1/τ

∫ τ

0 (m∗
2 ys(l) exp(−b2 ys(l))/(a2 + ys(l))

dl = 1. Hence there exists a continuum C = {(m2; x1, x2)} ⊆ (0,∞) × B × B non-
trivial solutions of (3.10) such that the closure C̄ contains (m∗

2; 0, 0). This continuum
gives rise to a continuum C1 = {(m2; y, z)} ⊆ (0,∞) × B × B of the solutions of
(3.7) whose closure C̄1 contains the bifurcation point (m∗

2; ys, 0).
To see that solutions in C1 correspond to solutions (y, z) of (3.7), we investigate

the nature of the continuum C near the bifurcation point (m∗
2; 0, 0) by expending m2

and (x1, x2) in Lyapunov-Schmidt series:
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m2 = m∗
2 + λε + · · · ,

x1 = x11ε + x12ε
2 + · · · ,

x2 = x21ε + x22ε
2 + · · ·

for xi j ∈ B where ε is a small parameter. If we substitute these series into the differ-
ential system (3.7) and equate coefficients of ε and ε2 we find that

{
x ′

11 = F11(xs, ys)x11 − F12(m∗
2, xs, ys)x21,

x ′
21 = F22(m∗

2, ys)x21.

and
{

x ′
12 = F11(xs, ys)x12 − F12(m∗

2, xs, ys)x22 + G12(x11, x11, λ),

x ′
22 = F22(m∗

2, xs, ys)x22 + x21 exp(−b2 ys )
a2+ys

(
λys + m∗

2x11(a2−a2b2 ys−b2 y2
s )

a2+ys

)
.

respectively. Thus, (x11, x21) ∈ B × B must be a solution of (3.10). We choose the
specific solution satisfying the initial conditions x21(0) = 1. Then

x21 = exp

⎛

⎝

t∫

0

(
m∗

2 ys(l) exp(−b2 ys(l))

a2 + ys(l)
− 1

)

dl

⎞

⎠ > 0.

Moreover x11 < 0 for all t (since
∫ τ

0 ((m1xse−b1xs )/(a1 + xs) − 1 − (m1 yse−b1xs

(a1−a1b1xs−b1x2
s ))/((a1+xs)

2)dl =− ∫ τ

0 ((m1 ys exp(−b1xs)(a1−a1b1xs−b1x2
s ))/

((a1 + xs)
2))dl < 0 implies that the Green’s function for first equation in (4.11) is

positive, here we have used (2.14). Using Lemma 3.2 we find that

λ= −

τ∫

0

m∗
2 x21(t)x11(t) exp(−b2 ys (t))(a2−a2b2 ys (t)−b2 y2

s (t))

(a2+ys (t))2 exp

(
t∫

0

(
m2 ys (l) exp(−b2 ys (l))

a2+ys (l)
− 1

)
dl

)

dt

τ∫

0

exp(−b2 ys (t))ys (t)x21(t)
a2+ys (t)

exp

(
t∫

0

(
m2 ys (l) exp(−b2 ys (l))

a2+ys (l)
− 1

)
dl

)

dt

>0,

provided with a2 − a2b2 ys − b2 y2
s ≥ 0. Thus we see that near the bifurcation point

(m∗
2; 0, 0) (say, for 0 < |m2 − m∗

2| = λ|ε| < λ0 ) the continuum C has two (subcon-
tinua) branches corresponding to ε < 0, ε > 0 respectively:

C+ = {(m2; x1, x2) : m∗
2 < m2 < m∗

2 + λ0, x1 < 0, x2 > 0},
C− = {(m2; x1, x2) : m∗

2 − λ0 < m2 < m∗
2, x1 > 0, x2 < 0}.

The solution is on C+ which prove the theorem, since λ > 0 is equivalent to m2 > m∗
2.

We have left only to show that y = x1 + ys > 0 for all t. This is easy, for if λ0 is
small, then y is near ys in the sup norm of B; thus since ys is bounded away from
zero, so is y. At same time, by Theorem 3.1, for the system (1.2), y is near ys means
that x is near xs ; thus x = s̃ − y − z > 0. We notice that the periodic solution (y, z)
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is continuous τ -periodic. So x = s̃ − y − z is piecewise continuous and τ -periodic.
We complete the proof. �	

4 Chemostat chaos

In this section, we will analyze the complexity of the periodic system (1.2). By
Theorems 2.1, 3.1 and 3.2, we know that if m1 < m∗

1, the periodic solution (s̃(t), 0, 0)

is globally asymptotically stable; if m1 > m∗
1 and m2 < m∗

2, then the (xs(t), ys(t), 0) is
globally asymptotically stable. According to Theorem 3.2, if m1 > m∗

1 and m2 > m∗
2,

the predator begins to invade the system. In the following we apply the forced model
equations are

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = 1 + ε sin(t) − x − m1xy exp(−b1x)

a1+x ,

dy
dt = m1xy exp(−b1x)

a1+x − y − m2 yz exp(−b2 y)
a2+y ,

dz
dt = m2 yz exp(−b2 y)

a2+y − z,

(4.1)

We shall numerically integrate Eq. 4.1 and seek the long-term behavior of the solutions
(after the transients have disappeared).

A traditional approach to gain preliminary insight into the properties of dynamic
system is to carry out a one-dimensional bifurcation analysis. One-dimensional bi-
furcation diagrams of Poincar é maps provide information about the dependence of
the dynamics on a certain parameter. The analysis is expected to reveal the type of
attractor to which the dynamics will ultimately settle down after passing the initial
transient phase and within which the trajectory will then remain forever.

Firstly, we want to investigate the influence of m1. In system (4.1), set m2 = 8, ε =
0.8 a1 = 0.8, a2 = 1 b1 = 0.1, b2 = 0.2 τ = 2π , and we choose m1 ∈ [1.6, 8] as
the bifurcation parameter. Figure 1 illustrates the bifurcation diagram of Poincar é
map for Eq. 4.1. The resulting bifurcation diagrams (Fig. 1) clear show that: with
increasing m1 from 1.6 to 8, the system experiences process of cycles → periodic

Fig. 1 (a, b) Bifurcation diagrams of Poincar é section for the substrate x and predator z in system (4.1)
under m2 = 8, ε = 0.8 a1 = 0.8, a2 = 1 b1 = 0.1, b2 = 0.2 τ = 2π and m1 is varied in [0.2,8]
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Fig. 2 Periodic-doubling bifurcations. In Eq. 4.1, m2 = 8, ε = 0.8 a1 = 0.8, a2 = 1 b1 = 0.1, b2 =
0.2 τ = 2π , (a–d) are the complete trajectories of τ, 2τ, 4τ and 8τ -periodic solutions over the time interval
from t = 300π to t = 500π , corresponding with m1 = 2.38, 2.78, 2.99 and 3.04

doubling cascade (Fig. 2) → chaos (Fig. 3) → periodic windows →chaos → periodic
halfing cascade (Fig. 4) → cycles, which is characterized by (1) period doubling, (2)
period halfing.

When m1 is small (m1 < m∗
1 = 2.08), the solution (s̃(t), 0, 0) is stable. When

m1 > m∗
1, the prey begins invade the system and the solution (xs, ys, 0) is

stable if m1 < q1 ≈ 2.27(> q0). When m1 > q1, the predator begins invade and
a stable positive period solution (Fig. 2a)is bifurcated from (xs, ys, 0) if m1 < q2 ≈
2.75. However, when m1 > q2, the stability of τ -periodic solution is destroyed and
2τ -periodic solution occurs (Fig. 2b) and is stable if m1 < q3 ≈ 2.95. When m1 > q3,
it is unstable and there is a cascade of period doubling bifurcations leading to chaos
(Fig. 3a, b). A typical chaotic oscillation is captured when m1 = 3.29 (Fig. 3). When
m1 > 5.8 is followed by a cascade of periodic halfing bifurcations from chaos to cycles
(Fig. 5). This periodic-doubling route to chaos is the hallmark of the logistic and Ricker
maps [12,13] and has been studied extensively by Mathematicians [14]. Periodic halv-
ing is the flip bifurcation in the opposite direction, which is also observed in [13].
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Fig. 3 Strange attractors (chaos) of the flow by Eq. 4.1. Compare a Poincar é section (b) with the complete
chaotic trajectory (a) (m1 = 3.29). Poincar é points 150–250 are plotted in (b), and the corresponding
complete trajectory over the time interval from t = 300π to t = 500π are plotted in (a)

Fig. 4 Periodic-halving bifurcations. In Eq. 4.1, m2 = 8, ε = 0.8, a1 = 0.8, a2 = 1, (a–d) are the
complete trajectories of 8τ, 4τ, 2τ and τ -periodic solutions over the time interval from t = 300π to
t = 500π , corresponding with m2 = 5.99, 6.18, 6.8 and 7.8
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Fig. 5 (a, b) Bifurcation diagrams of Poincar é section for the substrate x and predator z in system (4.1)
under m1 = 3.6, ε = 0.8, a1 = 0.8, a2 = 1 and m2 is varied in [1,21]

Secondly, we investigate the influence of m2. In system (4.1), set m1 = 5.8, ε =
0.8, a1 = 0.8, a2 = 1, b1 = 0.1, b2 = 0.2τ = 2π , and we choose m2 ∈ [1, 14]
as the bifurcation parameter. The resulting bifurcation diagrams (Fig. 5) show: with
increasing m2 from 1.6 to 8, the system undergoes process of a one-period bifurca-
tion → a three-period bifurcation → a two-period bifurcation → . . .. The invasion
of predator at m∗

2 ≈ 2.79; by using Theorem 3.1, when m2 > m∗
2 to be not very

large, the system shows stable period-one cycles; the τ -period behavior bifurcates to a
2τ -periodic cycles, after which period-doubling bifurcations ensure these culminate
in a Feigenbaum cascade of period-doubling bifurcations leading to a chaotic region.
As the parameter m2 is slightly increased beyond 8.73 or 12.38, the chaotic attractors
abruptly shrink to 3τ -periodic or 2τ -periodic cycles, after which is a Feigenbaum
cascade of period-doubling bifurcations leading to a chaotic region.

Comparable changes occur with an increase in the amplitude ε of the forcing term.
Set m1 = 6, m2 = 10, a1 = 0.8, a2 = 1, b1 = 0.1, b2 = 0.2 τ = 2π . When ε = 0,
system (4.1) has a stable limit cycle in positive quadrant. Figure 6 is the resulting
bifurcation diagrams of Poincare map for (4.1). Quasiperiodic range ε ∈ (0, 0.22)

often includes frequency locking in this case, too (see Fig. 7). In the plane of x − z this

Fig. 6 (a, b) Bifurcation diagrams of Poincar é section for the substrate x and predator z in system (4.1)
under m1 = 6, m2 = 10 a1 = 0.8, a2 = 1 b1 = 0.1, b2 = 0.2 τ = 2π and ε is varied in [0,1]
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Fig. 7 A typical quasiperiodic solution in the region ε ∈ (0, 0.22) with ε = 0.08. Compare a Poincar é
section (b) with the complete quasiperiodic trajectory (a). Poincar é points 150–250 are plotted in (b), and
the corresponding complete trajectory over the time interval from t = 300π to t = 500π are plotted in (a)

appearance of a closed curve (Fig. 7b), where the point never coincide, is an indication
of quasiperiodicity of Eq. 4.1. Further increasing ε, the system experiences process
cycles → periodic doubling cascade →chaos.

Pitchfork bifurcations and tangent (saddle node) bifurcations are abundantly ev-
ident in cycles in Figs. 1, 5 and 6, as well as attractor crises (the phenomenon of
“crisis” in which chaotic attractors suddenly appear or disappear, or change size dis-
continuously as or change size discontinuously as a parameter smoothly varies, was
first extensively analyzed by Grebogi et al. [15]). For instance, in Fig. 5, when m1 is
slightly increased beyond 8.73 or 12.38, the chaotic attractor abruptly disappears, thus
constituting a type of crisis.

5 Conclusions

In this paper, we introduce and study a model of Tessiet type food chain chemo-
stat with periodically varying dilution rate. Firstly we find the invasion threshold of
the prey, which is m∗

1 = τ(
∫ τ

0 (s̃(l) exp(−b1s̃(l))/(a1 + s̃(l))dl)−1. If m1 < m∗
1,

the periodic solution (1, 0, 0) is globally asymptotically stable and if m1 > m∗
1,

the prey starts to invade the system. Furthermore, by using Floquet theorem and
small amplitude perturbation skills, we have proved that if m1 > m∗

1, there exists
m∗

2 = τ(
∫ τ

0 (ys(l) exp(−b2 ys(l))/(a1 + ys(l))dl)−1 to play as the invasion threshold
of the predator, that is to say, if m2 < m∗

2 the boundary solution (xs, ys, 0) is globally
asymptotically stable and if m2 > m∗

2 the solution (xs, ys, 0) is unstable. By using
standard techniques of bifurcation theory, we prove that above this threshold there are
periodic oscillations in substrate, prey and predator.

Choosing different coefficients m1 and m2 as bifurcation parameters, we have
obtained bifurcation diagrams (Figs. 1, 5, 6). Bifurcation diagrams have shown that
there exists complexity for system (4.1) including periodic doubling cascade, periodic
windows, periodic halfing cascade. All these results show that dynamical behavior of
system (4.1) becomes more complex under periodically varying conditions.
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